小学四年级数学下册《鸡兔同笼》教学设计_四年级下册数学鸡兔同笼讲解视频
范文(通用7篇)
作为一名默默奉献的教育工作者,时常需要用到教学设计,借助教学设计可以更大幅度地提高学生各方面的能力,从而使学生获得良好的发展。那么问题来了,教学设计应该怎么写?下面是小编为大家整理的范文,仅供参考,欢迎大家阅读。
篇1
教学内容:
人教版课程标准实验教科书四年级下册第103-105页内容。
教学目标:
1、 了解“鸡兔同笼”问题,感受古代数学问题的趣味性。
2、 尝试用不同的方法解决“鸡兔同笼”问题,
3、 在解决问题的过程中培养学生逻辑推理能力。
教学重点:
尝试用假设法解决“鸡兔同笼”这类问题。
教学过程:
一、课前游戏,导入课题。
二、创设情境,提出问题。
1、出示原题:
师:同学们,我们国家有着几千年的悠久文化,在我国古代更是产生了许多位数学家和许多部数学著作。《孙子算经》就是其中一部,大约产生于一千五百年前,书中记载着这样一道有名的数学趣题,让我们一起去看看吧!
(电脑出示)今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?
2、理解题意:
师:同学们,你们知道这道题的意思吗?谁愿意试着说一说! 生:这道题的意思就是:今天有鸡和兔在一个笼子里,上面有35个头,下面有94只脚,问鸡和兔各有多少只?
师:大家同意吗?
(电脑出示)笼子里有若干只鸡和兔,从上面数有35个头,从下面数有94只脚,鸡和兔各有多少只?(全班齐读)
3、揭示课题:
师:这就是著名的‘鸡兔同笼’问题,也是这节课我们要研究的问题。
三、自主探索,解决问题
1、(出示例1)笼子里有若干只鸡兔。从上面数,有8个头,从下面数,有26只脚,鸡和兔各有几只?
2、分析并理解题意:
(1)从上面数,有8个头就是说鸡和兔的头一共有8个。 (也就是说鸡和兔一共有8只。)
(2)从下面数,有26只脚就是说鸡脚和兔脚总数一共是26只脚。
(3)问题是什么?(鸡和兔各有多少只?)
3、猜一猜:随学生猜想板书并验证。
4、 介绍列表法:
师:刚才我们是随意猜的,其实我们还可以有顺序的猜。“(电脑出示空的表格)
小结:这种按顺序列表的方法我们称之为列表法。这样我们也就用列表法解决了这个问题。
5、 介绍假设法:
当数字较大时,列表法就太麻烦了,能不能有其他更简单的方法呢?请同学们仔细观察表格,从表格中你能发现什么?小组之间交流一下。
(1、)假设全是鸡:在鸡兔总只数不变的情况下,每增加一只兔减少一只鸡,脚的只数就会增加2只。同学们,想想看我们应该增加几只兔,脚的只数会变成26只脚。同学们这个过程你们能用算式表示出来吗?请同学们试着用算式表示看看。
(2、)假设全是兔:先我们用假设全是鸡的办法解决了这个问题,现在假设全是兔有应该怎么分析和解决这个问题呢?同学们可以同桌边讨论边写算式?
小结:刚才通过列表法我们想到了两种算术方法。回头看看这两种方法的第一步,一个是假设全是鸡,一个假设全是兔。我们把这两种方法起个名字?板书(假设法)
6、介绍孙子算经(抬脚法)
四、课堂练习
课本做一做“龟鹤问题”
五、课堂小结
这节课你学到了什么?
板书设计
鸡兔同笼猜想法 列表法 假设法 抬脚法
教学反思
篇2
教学目标:
1 、对日常生活中的现象进行观察和思考,引导学生从中发现特殊规律,使学生掌握用列表的方法来解决“鸡兔同笼”的问题。
2 、从不同的角度分析问题,掌握解题的策略与方法,从而感受到数学思想的运用和解决实际问题的联系。
3 、培养学生分析问题的能力,渗透假设的数学思想,在解题中数形结合,提高学生对数据的再认识,再分析,将列表的过程更优化。
教学重点:
从不同的角度分析,掌握解题的策略与方法。
教学流程:
一、创设情境,明确目标
1、谈话:“同学们,自我介绍一下,我姓周,你们可以称呼我?今天需要我们共同配合,在这里上一节数学课,为了表达谢意,我为你们带来了一些礼物,快来猜一猜,有多少?(5…)太少了?(50…)多了,(40…)少了(45…)差不多了,(46…)恭喜你,答对了,下课就由你发给同学们。
2、喜欢数学吗?数学不但可以开阔我们的视野,增长我们的知识,还可以锻炼我们的思维。在我国古代就有许多有趣的数学名题,你们了解吗?今天,老师就向你们推荐一种有趣的问题------鸡兔同笼。
二、自主探索,合作交流
1 出示问题:“鸡兔同笼,有5个头,14条腿,鸡兔各有几只?”
(1)你从中获取什么信息?……
(2)请你们猜一猜将鸡、兔可能是几只?(……)
(3)把你猜的过程给大家说一说
(4)板书学生的过程
鸡 1 2 3
兔 4 3 2
腿 18 16 14
(4)评价:从尝试简单的开始,一个一个的试,最终找到了正确的答案,方法多么简单啊?如果我们再横竖加上几条线,就成了美观的表格。看来,列表来解决这类问题还确实简单,如果现在将鸡兔的数量增加,还能解决吗?(重点引入列表)
2、出示:“鸡兔同笼,有20个头,54条腿,鸡兔各几只?”
(1)自己先想一想如何利用列表来解决?
(2)小组内交流一下自己的想法。
(3)独立完成列表。
(4)汇报想法和过程
小组1:逐一列表------假设鸡有1只,兔子有19只,那么就有78条腿,(腿多了,说明什么?兔子多了,怎么办?)鸡有2只,兔子有18只,那么就有76条腿,一只一只地试,学生把试的结果列成表格。
通过表格引导学生观察:发现了什么?(每多一只鸡,少一只兔子,相应减少2条腿,)
小组2:跳跃式列表------假设鸡有1只,兔子有19只,那么就有78条腿,要比54条腿多的多,因此,兔子的只数也可能多了很多,但是鸡的只数可以不用一只一只依次递增,而是从猜一只到猜5只(或者其它几只),当腿的条数在50到60之间,(提出问题:兔子可能是几只?到底是谁估计的更加接近呢?)
引导发现:这样就减少举例的次数。并通过数据的调整来优化解题策略。
小组3:取中列表------假设鸡兔各有10只
小组4:方程
小组5;奥书班中学习过算术方法(让孩子清楚表达出自己的想法)
三、适时反思,掌握策略(两题任选其一)
“同学们,鸡兔同笼”
1、观察三种列表的方法,比较异同?
2、谈一谈;你们有什么感受?
四、深化练习,拓展延伸
1、课后练习1、2、3(比较不同-----答案是否唯一)
2、通过今天的学习,有什么收获?
篇3
【教学目标】
1、知识与技能
初步认识鸡兔同笼的数学趣题,了解有关的数学史。能用列表法和画图法解决相关的实际问题,结合图解法理解假设的方法解决鸡兔同笼问题。
2、过程与方法
通过画图分析、列表举例、假设计算等方法理解数量关系,体会数形结合的方便性,体验解决问题方法的多样化,提高解决实际问题的能力。
3、情感、态度与价值观
培养学生的合作意识,在现实情景中,在交流的过程中,使学生感受到数学思想方法的.运用与解决实际问题的联系,提高学生解决问题的能力和自信心,受到多种数学思想方法的熏陶,进而让学生体会数学的价值。
【教学重点】
用画图法和列表法解决相关的实际问题。
【教学难点】
体会解决问题策略的多样化,培养学生分析问题、解决问题的能力。
【教学准备】
课件。
【教学流程】
(一)问题引入,揭示课题。
师:(出示主题图)大约在1500年前,《孙子算经》中记载了这样一个有趣的问题。书中说:“今有雉(野鸡)兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”
问:这段话是什么意思?谁能说说?(生试说)
师:这段话意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚。问笼中鸡和兔各有几只?这就是我们通常所说的鸡兔同笼问题,如何解决这个1500年前古人提出的数学问题,就是我们这节课要研究的内容。(板书课题:鸡兔同笼问题)
(二)主动探究、合作交流、学习新知。
师:说明为了研究方便,我们先将题目的条件做一个简化。
(课件出示)例1:鸡兔同笼,有8个头,26条腿,鸡、兔各有几只?
师:同学们先讨论一下,看能不能给大家提供一种或几种解这道题的思路,让其它的同学能很容易就理解、弄懂这道题。(学生讨论)
学生初步交流,教师提炼:可以用画图法、列表法、假设的方法。
师:请同学们先认真思考,以小组为单位展开讨论、交流,看看你们小组该选择什么方法来解决这个问题?再把你们的想法,你的思考过程用你自己的方式记录下来。
学生思考、分析、探索,接下来小组讨论、交流。
小组活动充分后进入小组汇报、集体交流阶段。
师:谁能说一说你们小组探究的过程,你们是怎样得出结论的?鸡兔各有几只?
学生汇报探究的方法和结论:
1、 画图法:
给每只动物先画上2条腿(也就是都看成鸡),这样一共用16条腿,还剩下10条腿。一次增加2条腿,一只鸡就变成了一只兔,要把10条画完,要把5只鸡变成兔。
总结:画图的方法非常便于观察、非常容易理解。
2、列表法:(展示学生所列表格)
学生说明列表的方法及步骤:
学生汇报:我们先假设有8只鸡这样一共就有16条腿,显然不对,再减去一只鸡,加上一个兔,这样一个一个地试,把结果列成表格,最后得出3只鸡、5只兔。
师:同学们的探索精神和方法都很好,都能用自己的方法成功地解决“鸡兔同笼问题”。不过上面的两种方法,老师还是觉得比较麻烦,又是画图,又是列表的,有没有更方便简洁的方法来解决这个问题?
3、假设法:(随学生能否出现此种情况作为机动出示)
教师引导:观察上面的表格我们发现。如果8只都是鸡,则一共只有16条腿这样就比26条腿少10条腿,这是因为实际每只兔子比每只鸡多2条腿。一共多了10条腿,于是兔就有10÷2=5「只」,所以我们还可以这样去想:
板书:
方法一:假设8只都是鸡,那么兔有:
(26-8×2)÷(4-2)=5(只)
鸡有8-5=3(只)
同样如果8只都是兔,则一共只有32条腿这样就比26条腿多6条腿,这是因为实际每只鸡比每只兔子少2条腿。一共多了6条腿,于是鸡就有6÷2=3「只」,所以我们还可以这样去想:
板书:方法二:假设8只都是兔,那么鸡有:
(4×8-26)÷(4-2)=3(只)
兔有8-3=5(只)
小结方法:刚才我们用这么多的方法解决了鸡兔同笼问题,你最喜欢哪一种方法,说说你的理由。
现在我们重新总结一下这些方法:数目比较小时,用画图和列表的方法比较快,数目比较大时,用假设法比较好。
(三)解决实际问题、课堂延伸。
1.尝试解答课前提出的古代《孙子算经》中记载的鸡兔同笼问题。书中说:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?
看看我国古人是怎么解这个题的。
2、自行车和三轮车共10辆,总共有26个轮子。自行车和三轮车各有多少辆?
(四)课堂小结:
通过今天的学习,你有哪些收获?
师总结:这节课,我们一起用画图法、列表法和假设法解决了我国古代著名的“鸡兔同笼”问题。其实在1500年以来,我们中国历代的数学家都在不断的研究和探索这个问题,也得出了许多的解决“鸡兔同笼”问题的方法,而且从中得到了很多的数学思想。希望同学们在今后的学习中,善于思考,善于发现,善于总结方法。
篇4
教学过程:
一、游戏体验
师:这节课我们来做个鸡兔同笼的游戏好吗?
师:谁来介绍鸡和兔的特征?
生1:鸡一个头,两条腿
生2:兔一个头,四条腿
师:现在你们可以自己选择当鸡或当兔,同一排同学算同一个笼子,当鸡的同学站着,当兔的同学坐着,互相说说你们这一笼子小动物有几个头,几条腿?
(学生游戏,体验鸡兔同笼)
二、建立模型
师:谁来说说你们刚才是怎样数出有多少只脚的?
生:用鸡数乘以2,用兔数乘以4。
板书:鸡数2+兔数4
师:通过刚才的游戏你有什么发现?
生:当头数相同,而鸡和兔的只数不同,脚数就会发生变化。
师:如果头数和脚数都不变,鸡兔同笼,数头20个,数脚54只,你能猜出有多少只鸡和兔吗?现在请同学们大胆地猜测,并在小组内说一说。
(小组讨论)
师;可以用什么办法把你们刚才猜测的过程记录下来。
生发言:可以用画图或制成统计表的方法。
师:今天我们主要来学习用统计表的方法解决鸡兔同笼的问题。
师:谁来说说,统计表中每栏要表示什么?
师:现在请同学们独立地把你们猜测的过程记录下来,然后在小组内交流不同的方法。
(小组活动)
师:谁来说说你是怎样记录的?
反馈总结:同学们记录的方法大致可纳成三种情况;逐一列举法、跳跃列举法、取中列举法。谁能说说这三种方法各自的特点?(学生发言)
生:我们可以采用取中列表法,再结合跳跃列表法进行调整。
师:如何调整?
生:当发现在尝试过程中所算出的腿数比已知的腿数多,那么腿多的小动物要减少,当尝试过程中所算出的腿数比已知的腿数少,腿多的小动物要增加。
板书:猜测列举调整
三、巩固提升
师:刚才我们通过了猜测列举调整等过程,解决了鸡兔同笼的问题,你们学会了吗?
1、一只蜘蛛8条腿,一只蜻蜓6条腿 ,现在共有蜘蛛、蜻蜓12只,共有腿80条。你能猜出蜘蛛、蜻蜓各有多少只吗?
2、王大富买来65只鸡和兔,分别把他们安排在15个笼子里。现鸡兔不同笼,如果每个鸡笼住5只鸡,每个兔笼住4只兔,你知道需要几个鸡笼和兔笼吗?
四、思想教育与总结
师:鸡兔同笼的问题很有意思吧。早在1500年前我国古代的《孙子算经》里这记载着这样问题,后来传到日本,演变成龟鹤算。古代人真值得我们骄傲,可是今天你们是老师的骄傲,你们想出这么多解决鸡兔同笼的问题的方法,甚至有的同学还会自己设计问题,实在是了不起,希望同学们要把这种善于发现问题的精神发扬下去,将来成为一个了不起的人。
五、教学反思
对于我班多数的学生来说,学习《鸡兔同笼》可能会有一定的难度。本人本想以游戏为开端想去激发学生的学习兴趣,但由于本班学生学习基础差,参与意识不强,因此本人对本堂课不是很满意
我认为我做的比较成功的地方是,在这节课当中我主要借助教材上的列表法,再让学生进行大胆的尝试与猜测,去弄懂鸡兔同笼问题的基本解题思路。师生共同经历了和得出三种不同的列表方法:逐一列表法、、跳跃式列表法、取中列表法。
就本堂课而言,还存在以下问题:
1 、在创设完情景引导学生用什么方法解这个问题时,学生的参与意思被动,是我没有预想到的。如果把前一部分改成让学生动手画图,可能效果会更好。情景创设上有漏洞,需进一步完善。
2 、我在假设之后怎么验证结果是否正确分析得较细,但对怎么假设觉得没有引导好,过程中出现了学生只假设了鸡的只数,然后根据腿的数量去推算出兔的只数,误解了题意。
3 、在总结规律是我如果能让学生自己多动嘴说一说,也许课堂效果会更好。
4 、由于时间练习量不多,最后一个练习题应有多种结果,也没有一一罗列。今后教学中要紧凑课堂结构,要少讲,留更多的时间给学生于练习。
篇5
教学目标:
1、在解决鸡兔同笼的活动中,通过列表枚举解决鸡兔的数量问题。
2、在解决鸡兔同笼的活动中,通过列表尝试和不断调整的过程从中体会解决问题的一般策略——列表,让学生学会从不同角度分析,掌握解题的策略与方法。
3、运用学到的解题策略——列表解决生活中的实际问题。
4、培养学生分析问题的能力,渗透假设的数学思想。
教学重点
让学生经历列表、尝试和不断调整的过程,体会解决问题的一般策略—列表。
教学难点
运用学到的解题策略解决生活中的实际问题。
教学过程:
一、情境引入,激发兴趣
今天老师给同学们带来一本书《孙子算经》,其中有这样一道题目
今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?
谁来读一读,你见过这类题吗?
今天我们就来研究这类问题(板书鸡兔同笼)
二、探索问题
1、课件出示:(教材中的情景图)鸡兔同笼,有20个头,54条腿,鸡、兔各有多少只?
从图中你能知道哪些数学信息:(有鸡、有兔、20个头、54只腿,鸡有2条腿、兔有4条腿)
现在同学们就来猜一猜鸡、兔各有多少只?
把你猜想的结果跟你的同桌同学交流交流。
学生交流后:请学生汇报猜想的情况
教师随机板书
看到这么多种猜测,你知道哪种答案是正确的吗?你又想说什么
生:可以按照一定的顺序把他们排列起来看就很清楚
师:对,按照一定的顺序把他们排列在表格里那会看得更清楚
那么列表先做什么
生:(1)画表
(2)填写第一行
师:请你们把猜测的结果按一定的顺序填在表格中,并验证,哪种猜测正确。
出示学习要求1、先独立尝试猜测
2、把尝试的数据在表格中表达出来
3、在小组内交流自己的想法
生:尝试列表
展示学生的表格请学生说一说是怎样做的
师:一共尝试了几次
生:13次,尝试出了这道题的答案
师:我发现刚才同学们在写腿的只数时特别快,观察这张表格,你发现了什么
生:在头数相同的情况下,增加一只鸡,减少一只兔,腿就少2只。
师:给这种列表法起个名字
生:起名字
师:在数学上也有一个名字逐一列表
师:观察这张表格,你有什么发现
生:一一列出,肯定能找出答案,但有些麻烦
师:那还有什么列表方法
展示学生第二种列表方法出示表格
生:说这种列表的方法
师:观察这个表格,你又发现了什么
生:这种列表,先几个几个的数,再逐渐调整
师:先几个几个数,再往回调,在数学上也有个名字跳跃式列表
展示学生第三种列表方法出示表格
生:说这种列表的方法
师:观察这个表格,你又发现了什么
生:这种列表,先假设鸡兔各占一半,再调整
师:这种列表有直接特点,我们称这种列表方法为取中列表
想一想,为什么用列表法解决这个问题
生:简单,能准确计算结果
师:你更喜欢哪种列表方法,你们在不知不觉中找到解决问题策略,是什么
生:列表
师:首先根据信息尝试猜测,再计算验证,最后合理调整。
师:还可以用什么方法计算
生:计算
师:想知道古人是怎样解决这道题吗
课件出示资料
师:看了这个资料你想说什么
三、实践运用,巩固深化
1、小明的储蓄罐里有1角和5角的硬币共27枚,价值5。1元,1角和5角的硬币各有多少枚?
2、赛场上12张乒乓球台上同时有34人进行比赛,正在进行单打、双打比赛的球台各有几张?
3、小红参加数学知识竞赛,共10道题,每做对一道题得10分,做错一道题扣2分。小红每道题都做了,共得64分。她做对了几道题?
四、总结
通过这堂课的学习你学会了什么?
篇6
1.教材分析:
鸡兔同笼问题设置在数学广角中,其教学与常规课有所不同。区别之处在于要把数学思想方法贯穿始终,巧用素材,有效提升,培养学生的逻辑推理能力,为学生的终身发展奠定基础。
《数学用书》中说道:“数学广角重在向学生渗透一些数学思想方法,并初步培养学生有顺序地、全面地思考问题的意识。”因此,鸡兔同笼问题作为数学广角教学内容之一,正是教材注重渗透思想方法,关注学习过程的重要体现。教材借助我国古代趣题“鸡兔同笼”问题,让学生应用列表、假设、方程等多种方法来解决问题。教材在本单元安排“鸡兔同笼”问题,一方面可以培养学生的逻辑推理能力;另一方面使学生体会代数方法的一般性。教材的编排有以下特点:
(1)教材首先通过“鸡兔同笼”这一问题,激发学生解答我国古代著名数学问题的兴趣。
(2)注重体现解决“鸡兔同笼”问题的不同思路和方法。
(3)让学生进一步体会到这类问题在日常生活中的应用。
2.学情分析:
六年级的学生他们已初步接触多种解题策略,会一些基本的解决数学问题的方法。
教学目标:
1.知识与技能目标:通过学习,让学生掌握用图示法、列方程法、假设法解决"鸡兔同笼"问题,让学生体验解决问题的多样性,并能用这些方法解决生活中类似"鸡兔同笼"的问题。感受古代数学问题的趣味性和解法的巧妙性。
2.过程与方法目标:学会在学习中进行尝试.比较.分析,培养解决问题的能力,并在解决问题的过程中培养学生的合作意识和逻辑推理能力。
3.情感与价值目标.了解我国古代数学研究成果,增强明族自豪感。
教学重点:尝试用不同的方法解决"鸡兔同笼"问题。
教学难点:在解决问题的过程中培养学生的逻辑推理能力。
教具准备:圆形纸片、小棒若干小黑板图片
教学过程:
一、谜语激趣,导入新课
1.出示谜语卡片。(目的是激发学生学习兴趣问题的欲望,同时引出课题)
顶上红冠戴红红眼睛白白毛
身披五彩衣长长耳朵短尾巴
能测天亮时身披一件白皮袄
呼得众人醒走起路来轻轻跳
(猜一动物)(猜一动物)
老师根据学生的回答,先后在黑板上出示鸡和兔的图片。
2.板书课题:鸡兔同笼。
3.用数学语言描述一下鸡和兔各有什么特征。(目的是为后面的教学做铺垫)
(预设:鸡和兔各有一个头,鸡有两只脚,两只翅膀,兔子有四只脚。)
二、合作讨论,探究新知
1.出示例1:笼子里有若干只鸡和兔。从上面数,有8个头,从下面数,有26只脚。鸡和兔各有几只?「小黑板」(“鸡兔同笼”的原题数据比较大,不利于首次接触该类问题的学生进行探究,因此我第一次出示的尝试题把原题中的数据改小了,这样有利于激起学生的学习兴趣,能充分照顾到不同层次的学生,让学生主动参与进来。)
2.从题目中你们能发现什么数学信息?(捕捉隐含信息)(目的是引导学生理解题意:鸡和兔共8只,鸡和兔共有26条腿,同时捕捉隐含信息:鸡有2条腿,兔有4条腿。)
3.独立思考:(培养学生独立解决问题的能力。)
4.小组讨论探究。(老师参与其中,启发、点拔,师生互动。)(针对六年级的学生年龄特点和心理特征,以及他们现在的知识水平,采用启发式,小组合作等教学方法,让尽可能多的学生主动参与到学习过程中。在师生互动中让每个学生都动口、动手、动脑,腾出足够的时空和自由度使学生成为课堂的主人,使每个学生的学习都能有体验、有收获、有感想。目的是激发学生的探索欲望,让学生在小组讨论交流中弄清“鸡兔同笼”问题的结构特征和解题策略,亲历多样化解题的过程,初步形成解决此类问题的一般性策略。)
5.学生汇报探究的方法和结论。
预设以下几种方法:(根据时间而讲解其中的二至三种方法)(这种设计有一定的伸缩性,教师可以灵活把握。)
(1)用方程解
解:设兔有X只,那么鸡有(8-X)只。
4X+2(8-X)=26
16+2X=26
2X=26-16
X=5
8-5=3(只)
即鸡有3只,兔有5只。
引导学生口头检验
(2)形象生动,讲解假设法
①、假设全是鸡一共就有8×2=16条腿。实际有26条腿,这样笼子里就少了26-16=10条腿,为什么会少了10条腿呢?(把兔当了鸡在算。每只兔少算两条腿,那把几只兔当成了鸡算就会少算10条腿呢?就看10里面有几个2就是把几只兔当成了鸡来算)10÷2=5就是兔的只数,8-5=3(只)鸡
②、思考:假设笼子里都是兔该怎样求?
同桌口头完成。
小结:刚才我们假设都是鸡或都是兔,所以把这种方法叫做假设法。(板书:假设法)
(3)列表法。
出示图表:(小黑板)
学生反馈填表过程,说明从中发现的规律。
小学四年级数学下册《鸡兔同笼》教学设计 篇7
教学目标:
本活动的目的是通过学生对一些日常生活中的现象的观察与思考,从中发现一些特殊的规律。在“鸡兔同笼”的活动中,通过列表枚举方法,解决鸡与兔的数量问题。
教学重点:
尝试用不同的方法解决鸡兔同笼问题,对尝试法有所了解和体验,并使学生体会假设方法解决此类问题的优越性。
教学难点:
在解决问题的过程中培养学生的逻辑推理能力。
教具准备:
电脑课件
年级工作安排
教学过程:
一、创设问题情景
师:同学们今天老师带来2幅动物的图片请你们欣赏一下,看这是什么?(出示公鸡图片)这幅呢?(出示兔子图片)
师;这是两种同学们很熟悉的小动物。
师:一只鸡有几个头,几只脚?一只兔子有几个头?几只脚?一只兔子比一只鸡多几只脚,一只鸡比一只兔子多几只脚?
师:看来这几个问题对于你们来说太简单了。老师这儿还有一个有关于鸡兔的有趣问题我们一起来看看。
课件出示:
“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?”
师:这个有趣的问题出自于我国大约在1500年前唐代的一部算书《孙子算经》。谁来读一读?
师:你们明白这句话的意思吗?
(如果学生说不出师可说,师:这句话的意思是,有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚。问笼中鸡和兔各有几只?这就是我们通常所说的鸡兔同笼问题,“鸡兔同笼”问题是我国古代数学名题之一。这节课我们就一起来研究鸡兔同笼问题。(板书课题)同学们一起来比一比看谁能把这个古代数学名题解决,有没有信心!
如果生能说出这句话的意思。师:看来你了解的知识可真多。“鸡兔同笼”问题是我国古代数学名题之一。这节课我们就一起来研究鸡兔同笼问题。(板书课题)同学们一起来比一比看谁能把这个古代数学名题解决,有没有信心!
)
二、解决问题
1、好!请看屏幕。课件出示
出示课件:鸡兔同笼,有20个头,54条腿,鸡、兔各有几只?
师;谁来读一读题目中的数学信息和数学问题。
2、师:请同学们先想一想,如何解决这个问题?
师:把你的想法,解决问题的过程写在本子上。
3、生在做题时,师在注意巡视,选择有代表性的做法。
4、展示学生的答案。
实验投影展示
10分钟后进入小组汇报、集体交流阶段。
小组1:我们采用列表法得出的答案。(实物投影展示小组的成果)先假设有1只鸡,19只兔子,脚就有78只,太多,然后又假设有2只鸡,18只兔子,脚还是太多了。这样试下去就得到了有13只鸡,7只兔子。
(也许学生不知道这是用列表法解决问题,师你能给你这种解决问题的方法起个名字吗?)
师:还有哪些小组采用不同的列表法?
小组2:我们也采用列表法得出的答案,我们发现鸡增加1只,兔子减少1只,腿就减少2条,所以我们没有一个一个的试,那样太麻烦,而是从2只鸡,18只兔直接跳到10只鸡,10只兔。最后也得到了13只鸡,7只兔。
小组3:我们小组也是列表法。我们是先假设鸡有10只,兔子也有10只。这样比较简便。
师:这三个小组的同学都采用了列表的方法来解决问题,你们为什么要采用列表的方法解决这样的问题呢?
生1:列表可以帮助我们一一举例,从中找出需要的答案。
生2:列表也就是运用假设法,通过逐步的假设,最终找到符合条件的答案。
师:同样采用列表的方法解决这个问题,可这三种列表的方法又有什么不同呢?
生3:我认为第一小组的列表方法的特点是逐一列表,这样不容易遗漏答案。
生4:虽说第一小组的方法可以完全地列出全部的答案,但比较麻烦。我认为第三组的方法比较好,可以根据题目的根据情况,确定假设的范围,这样可以很快寻找到需要的答案。
师:在采用列表法解决这个问题的同时,还采用了一种解决问题的方法,你们知道采用了什么方法吗?
师:对!还采用了假设的方法。
师:同样采用列表、假设的方法解决这个问题,可是解决问题的过程却有不同。如果现在让你选择其中一种列表的方法解决鸡兔同笼问题,你会选择哪种列表解决问题的方法?为什么?
师:小结:同学说得都很有道理,同样选择列表的方法,我们可根据题目的实际条件,选择适当的方法取中列举的方法,由于鸡与兔共20只,所以各取10只,接着在举例中根据实际的数据情况确定举例的方向,这样可以大大缩小举例的范围。快又准确地寻找到我们需要的答案。
4、有其他的解法吗?(老师让举手的其中三名学生上台板演)
生5:假设20只都是鸡,那么兔有:(54-20×2)÷(4-2)=7(只),鸡有20-7=13(只)。
生6:假设20只都是兔,那么鸡有:(4×20-54)÷(4-2)=13(只),兔有20-13=7(只)。
5、生还可能采用画图的方法。
师:同学太聪明了,想出了这么多好办法,我们可以选择画图、列表、假设等方法解决问题,在这些方法中我们可以选择取中列表法。在列表时应注意如何设计表头:
现在大家就根据列表的方法解决一些问题吧!
三、自主练习
同学们可以用列表的方法独立地尝试解决。
1、鸡兔同笼,有17个头,42条腿,鸡、兔各几只?请你列表的方法解决。(想一想怎样设计表头)
(例题中的表格老师已经设计了表头,练习题中,放手让学生根据已有的经验自己设计,培养学生数据的收集、整理能力。)
2、同学们的材料袋里有1角和5角的硬币共27枚,价值5.1元,1角和5角的硬币各有多少枚?
生做题后汇报自己解决问题的方法,师问:你为什么选择这种解决问题的方法?
师小结:通过以上的练习可以看出同学们能够根据不同的题目选择列表假设的方法解决有关于鸡兔同笼的问题。
四、小结:
师:通过这节课的学习,你有什么收获?
总结:这节课同学们采用了不同解决问题的方法解决了我国古代数学名题之一“鸡兔同笼的问题”。希望同学们今后在学习中也能象今天一样肯于动脑,勤于思考,选择合适的方法解决实际问题。